この文は、「衛通ルネッサンス -技術屋群像-」(2001 年 7 月発行、A4 版 498 頁) -技術編- 第 2 章機械技術 ●アンテナ・レドーム(木名瀬武男) に収録されたものです。

3) エピソード 厳冬期の山頂調査とレーダードームの開発

レードームと共に風速 100mの台風と闘った記録

一厳冬期の山頂調査ー

『彗星が突然現れたような感じだった。彗星のようにこまかい発光点の密集したものだったが、彗星とは違ってそれはひどく能動的な輝きを持ち、しかも急速に動いていた。それは動く光芒であった。それまで、望遠鏡の端にとらえていた星が、突然、流星となったようであった。光芒は眼鏡の中央を斜めに横切って消えた。一瞬のできごとでであった。そのとき富士山頂は風速四十五メートルであった。』これは新田次郎の小説「富士山頂」に出てくる見通し試験のくだりである。この実験は昭和37年2月に行われた。

私は 前年 4 月 山頂でのパネルの着氷試験の経験もあり 三菱電機を代表して 調査に行く事になり 他に 大成建設伊藤氏等合計 5 名の調査隊編成であった。

10日余りの山頂での調査・試験で体力・気力とも疲労の限界に近く翌日下山することを決めた最後の夕方だった。みんなはやれやれこれで終わりだとのムードであったが自分としてはこの調査結果では満足せずズバリの確証をつかむ見通し試験を何とか成功させねばと考えていた。測候所西側のカゴ状のフレームにひとりもくもくとマグネシュウムフライヤーをセットして夕暮れを待った。

もう皆は 夕食をとり始めたが 何度も外に出ては下界をながめる。何もみえない やはりだめかと諦めかけて いると スウーと雲が薄くなり東京の灯がみえかくれする。東京側から富士山が夕焼けにシェルエットにみえるとの連絡が入る。 チャンスだ 興奮で身体がぞくぞくしてくる。 アイゼンをつけピッケルを持っての完全装備で東京の準備を待つ。 やがて山頂は暗闇に包まれ 外は台風並みのものすごい強風である。 立っていたらあっという間に火口へ飛ばされてしまう、 這うようにして数歩進んでは止まり 風の息を待ち また数歩這い進む そんな繰返しで たった 20米程がやけに遠く感じた。 やっとたどり着き 持参の一本のフライヤーに火を付け セットしておいたフライヤーの東に点火する。

強風の中の炎の輝きに一瞬目がやられ思わず目を閉じしゃがみこむ。恐る恐る目を開けるとフライヤーは燃え尽きていた。そして小屋の入口まで戻るには来るときの何倍もの時間が掛かったような気がした。あまり戻るのが遅いので 火口に飛ばされてしまったのではないかと心配していた人が居た程であった。東京からは 奇跡的な大成功との連絡が入っていた。最後の最後まで諦めずに何とかしたい一心で頑張った甲斐があった。うれしさと責任が果たせたという安堵感に浸る。

遅れた夕食をとった後 最後のデータ整理と計算にかかる。データを精査すると 測候所、伊豆岳、東京は非常に微妙な関係にあり測候所の東端からの確認も必要なことがわかってきた。これでは 折角の見通しテストの成功も価値が半減してしまう。外を見ると東京の灯は見えるではないか。何とかもう一度見通しテストをしたい。しかし実験は全て終了し無線連絡は止まってしまっている。測候所の人に事情を話し相談する。「これから 下山して東京に連絡を取るので 連絡がついたら 実験をしてもらうように頼む」下山は無茶だ死にいくようなものだとたしなめられ途方に暮れる。そのとき 通信担当のひとが「これから 全国に呼びかけどこか捕まえましょう」と電波を飛ばしてくれる。そのうち名古屋とつながった。東京へ緊急電話連絡してくれ やがて東京側と無線がつながる。何事かといぶかる東京側に事情を話し 第2回目のテストの準備にかかる。こんどは 山頂に居た人全員総出でテストを応援してくれる。この試験も大成功であった。

『執念は 周りの人を動かし、そして自然現象まで味方してくれることがある。何でも一所懸命やれば何とかなるものだ』と言う この若いときの体験がその後の会社生活で 仕事に取組む姿勢となった。

- レーダードームの開発-

『レーダードームは巨大な鳥籠を思わせる形状をしていた。直径九メートル、高さ七メートル、重量は約六百キログラムあった。鳥籠の網の目は三角形の多面体になっていた。この鳥籠型レーダードームを円筒形建物の上に載せ、鳥籠の網の目を、ガラス繊維入りのポリエステル樹脂のパネルでふさぐことになった。・・この巨大な鳥籠は当初からヘリコプターによって吊り上げるという計画のもとに設計され製造されていた。』と新田次郎の「富士山頂」に書かれている。

気象条件の厳しい富士山頂のレーダーは ドームで覆う事が絶対条件であった。

電波透過性能を満足し、風速 100 米/秒に耐える強度をもち、輸送・組立作業の制約をクリヤーし氷の塊になってしまわないような防氷対策等 入社数年の若輩技術者にとっては途方もない難題であった。いや 若いからこそ我武者羅にやれたのかも知れない。

電波透過性能上 ドームの骨の幅は わずか 2.5cm しか許されない。当時 レーダードームは一般的に FRP (ガラス繊維強化樹脂) であったが 強さと信頼性を考え アルミ金属の骨に FRP のパネルを取付ける新しい方式とした。そして 山頂での難しい組立て作業を避け、また構造上 ドームは丸くなると強いが組立て途中の半端な状態で突風に遭ったらひとたまりもない。そんなことから 外側のフレームを地上で組立て トリカゴ状にしこれをヘリコプターで運ぶ事にした。 山頂で FRP パネル、内側フレームを取付けるのは比較的容易である。外側フレーム組立部分は当時のヘリコプターの輸送重量 600kg に収まるようにした。

このようにギリギリの厳しい条件で設計しなければならないドームが 100 米/秒の強風に耐えるものとするため 多くの計算、実験を積上げ 開発を進めた。レーダードームにかかる風圧を正確に知るため観測塔と一体化した木型モデルによる風洞実験、ドームモデルの強度試験、パネル・フレーム結合部の実物試験さらに完成したレーダードームを工場で仮組立てし 実物での強度試験を行った。

そしてこれらについては当時の日本の権威である 東大生研坪井研究室の指導を受け ようやく完成した。この間 電気的な試験・検討は三菱電機の研究所(喜連川研究室)が並行して実施した。

昭和 52 年 レーダーの更新があったが 十分な性能を持つことが実証されたレーダードームは一号機の設計 そのままで製作された。

そして 開発時 FRP パネルの寿命が議論され 10 年は大丈夫と予測したが 一号機の解体で アルミフレーム取付け部の摩耗が若干みられたが、FRPの寿命は十分であることが解った。

限られた期間で、予算と悪戦苦闘しながら、未知の技術課題に挑んだ若い技術者達の努力の結晶が 今も日本最高地点に建ち続けていることを誇りに思っている。

- ドーム 100 米/秒以上の強風に耐える-

昭和39年9月24日 台風が富士山を直撃し 風速計は93米/秒で壊れ 風速測定不能となった。 風が 山の斜面に沿って吹いてくることを考えれば ドームには110~120米/秒の風圧が掛かったものと 思われる。この強風でレーダードームも、レーダーもその性能を十分発揮した。

私は 休暇をとり北アルプス槍ケ岳に登るべく 新穂高温泉に入った。天候が悪く登山を諦め上高地に遊んで 関西にかえることにした。しかし台風は富士山方向に進路を取っていることを知り大月に出て 翌日吉田口よ り富士山に登った。次第に強くなる風雨の中を登る者は勿論いない。激しい風雨、ガスの中 山頂測候所にた どり着く。測候所にいた人達はびっくり。山頂より会社に連絡するとこれから片道出張扱にする故 頑張れと の森川係長の指示。

レーダードームの設計者にとっては実物でデータを取れる千載一遇のチャンスだが 如何せん準備もなく、 無手勝ではどうしようもない。台風下ドームの状態をこの耳、目で観察するほかなく腹を決める。9 月 24 日午前3時頃から風が一段と強くなり 朝方まで続いた。

レーダードーム室へ登るはしごにへばりつきハッチから首を出し 頭の上ではレーダーがぐるぐる回っている中 4 時間ほど頑張る。外の風の轟音、パネルが風に叩かれバッシバッシという音がドーム内にこだま、反響し耳が裂けんばかりの大音響である。ついに風速計も飛んでしまい記念すべき風速の日本記録(?)も測定不能となる程であった。

ドームは 本当にこの風に耐えるのだろうか、我々は あれだけのことをやって開発したものだから壊れるは ずはないとの自信、でも もしドームがつぶれたらレーダーは飛んでしまい大変なことになるとの不安が頭を かすめる。 轟音、自信、不安、そして祈りの 4 時間余りそれは 長い時間だった。

7時過ぎ風は弱くなる。ドームは無事だった。万歳。肩の力が抜け身体はぐったり。そして下山。

5度目の富士山だが こんなにも青く下界がすっきり、きれいに見えたのは初めてだった。そして帰りの列車から見る富士山のすがすがしさが印象的だった。

以上は 私が 24 歳~26 歳のときのことであった。後に 1994 年 8 月に 30 年を記念して 妻を伴って富士山頂測候所を訪れ、しばし 若き日の思い出に浸った。 (了)